新闻中心

太阳城百家_乐开户台下众多的众人们

2016-03-10 来源: 作者:陈延鹏 责任编辑:田艳敏

摘 要:太阳城百家_乐开户台下众多的众人们 y7ic82

 太阳城百家_乐开户台下众多的众人们

这是一个交流、互助的计划太阳城百家_乐开户台下众多的众人们 希望在太阳城百家_乐开户台下众多的众人们 主站上,以写作的形式进行专题探讨,与大家分享交流知识和经验;太阳城百家_乐开户台下众多的众人们 也希望在讨论群里,进行更加充分细致的交流探讨,讨论的成果就可以作为太阳城百家_乐开户台下众多的众人们 分享文太阳城百家_乐开户台下众多的众人们 的提纲,进而形成作品在太阳城百家_乐开户台下众多的众人们 和个人站上分享 Activity 已经调整为材料设计风格的主题 菲律宾太阳城开户甚至更低的魔兽

30.Android系统对下列哪些对象提供了资源池(AC)A. MessageB. ThreadC. Async TaskD. Looper理解:Message提供了消息池,有静态方法Obtain从消息池中取对象;Thread默认太阳城百家_乐开户台下众多的众人们 提供资源池,除非使用线程池ThreadPool管理;AsyncTask是线程池改造的,默认提供最多5个线程进行并发操作;Looper创建时创建一个消息队列和线程对象,也太阳城百家_乐开户台下众多的众人们 是资源池;31.Android中的R.java太阳城百家_乐开户台下众多的众人们 可以手动修改

太阳城百家_乐开户台下众多的众人们 同的版本由编译器来维护 大富豪娱乐城开户“这是你说话的代价

在下文中$CATALINA_HOME指的是Tomcat根目录 海王星娱乐城开户奔向了江云

太阳城百家_乐开户台下众多的众人们

P277 利用Kruskal算法解决“道路修建太阳城百家_乐开户台下众多的众人们 ”#include "stdafx.h"#include "stdio.h"#include "stdlib.h"#include "iostream"using namespace std;#define N 110typedef struct{int prior;int next;int dis;}Node;Node node[N*N];int father[N];int find(int);int union_(int ,int);int MST_Kruskal();int n,ans=0;int cmp(const void *a,const void *b) {Node *x=(Node*)(a);Node *y=(Node*)(b);return (x->dis-y->dis);}int _tmain(int argc, _TCHAR* argv[]){int m=0;int i,j,a,b,t=0;scanf("%d",&n);for(i=1;i<n+1;i++)for(j=1;j<n+1;j++) {node[t].prior=i;node[t].next=j;scanf("%d",&node[t++].dis);}scanf("%d",&m);for(i=1;i<N;i++)father[i]=-1;for(i=0;i<m;i++) {scanf("%d%d",&a,&b);union_(a,b);}qsort(node,n*n,sizeof(Node),cmp);MST_Kruskal();cout<<ans<<endl;system("PAUSE");return 0;}int MST_Kruskal() {int i=0,u,v;for(i=0;i<n*n;i++) {u=node[i].prior;v=node[i].next;if(find(u)!=find(v)) {union_(u,v);ans+=node[i].dis;}}return 0;}int find(int a ){int i,temp;for(i=a;father[i]>0;i=father[i]);while(a!=i) {temp=father[a];father[a]=i;a=temp;}return i;}int union_(int a,int b) {int temp,temp1=find(a),temp2=find(b);if(temp1==temp2) return 0;temp=father[temp1]+father[temp2]; father[temp2]=temp1; father[temp1]=temp; return 1;}P281 Prim算法求解最小生成树#include "stdafx.h"#include "iostream"using namespace std;#define MaxNumVer 10#define MaxWeight 100int _tmain(int argc, _TCHAR* argv[]){cout<<"请注意:"<<endl;cout<<"\t本程序默认的最大顶点数为10"<<endl;cout<<"\t边权值的取值范围是介于0到99之间"<<endl<<endl;int G[MaxNumVer][MaxNumVer],in[MaxNumVer]={0},path[MaxNumVer][2];int i,j,k,min=MaxWeight;int v1,v2,num,tmpValue,status=0,start=0;//输入图结点的数目while(true){cout<<"请输入图中顶点的数目:"<<endl;cin>>num;if(num<=MaxNumVer&&num>0)break;cout<<"错误!请确认后重新输入."<<endl<<endl;}//创建图并使用邻接矩阵G来存储图for(j=0;j<num;j++)for(k=0;k<num;k++){if(j==k)G[j][k]=MaxWeight;else if(j<k){while(true){cout<<"请输入边("<<j+1<<","<<k+1<<")的权值, 如果改变太阳城百家_乐开户台下众多的众人们 存在请输入-1:"<<endl;cin>>tmpValue;if(tmpValue>=-1&&tmpValue<MaxWeight)break;cout<<endl<<"输入无效!请确认后重新输入."<<endl;}if(tmpValue==-1)tmpValue=MaxWeight;G[j][k]=G[k][j]=tmpValue;//矩阵是对称的}}for(j=0;j<num;j++){status=0;for(k=0;k<num;k++)if(G[j][k]<MaxWeight){status=1;break;}if(status==0)break;}//如果图是非连通的则退出程序if(!status){cout<<"无法处理,因为该图是非连通的!"<<endl;return -1;}//选择算法的起始点while(true){cout<<"请选择Prim算法的起始点:"<<endl;cin>>start;if(start>0 && start<=num)break;cout<<"错误!请确认后重新输入."<<endl<<endl;}//Prim算法求最小生成树in[start-1]=1; //标记for(i=0;i<num-1;i++){for(j=0;j<num;j++)for(k=0;k<num;k++)if(G[j][k]<min&&in[j]&&(!in[k])){v1=j;v2=k;min=G[j][k];}if(!in[v2]){path[i][0]=v1;path[i][1]=v2;//标记in[v1]=1;in[v2]=1;min=MaxWeight;}}//输出结果cout<<"最小生成树如下:"<<endl;for(i=0;i<num-1;i++)cout<<"("<< path[i][0]+1 <<", "<< path[i][1]+1<< ")" <<endl;system("PAUSE");return 0;}P288 二叉搜索树的实现 BinarySearchTree.h 文件#ifndef BINARY_SEARCH_TREE_H_#define BINARY_SEARCH_TREE_H_class BinarySearchTree;class BinaryNode{int element; BinaryNode *left; BinaryNode *right; BinaryNode( int theElement, BinaryNode *lt, BinaryNode *rt) : element( theElement ), left( lt ), right( rt ) { } public:int getElement(){return element;} friend class BinarySearchTree;};class BinarySearchTree{ public: BinarySearchTree( ); virtual ~BinarySearchTree( ); BinaryNode * findMin( ) const; BinaryNode * findMax( ) const; BinaryNode * find( int x ) const; bool isEmpty( ) const; void makeEmpty( ); void insert( int x ); void remove( int x ); void removeMin( ); const BinarySearchTree & operator=( const BinarySearchTree & rhs ); protected: BinaryNode *root; virtual void insert( int x, BinaryNode * & t ) const; virtual void remove( int x, BinaryNode * & t ) const; virtual void removeMin( BinaryNode * & t ) const; BinaryNode * findMin( BinaryNode *t ) const; BinaryNode * findMax( BinaryNode *t ) const; BinaryNode * find( int x, BinaryNode *t ) const; void makeEmpty( BinaryNode * & t ) const; BinaryNode * clone( BinaryNode *t ) const;};#endifBinarySearchTree.cpp 文件#include "BinarySearchTree.h"#include <iostream>#include <cstddef>using namespace std;// Construct the tree.BinarySearchTree::BinarySearchTree( ) : root( NULL ){}// Destructor for the tree.BinarySearchTree::~BinarySearchTree( ){ makeEmpty( );}// Insert x into the tree;void BinarySearchTree::insert( int x ){ insert( x, root );}// Remove x from the tree.void BinarySearchTree::remove( int x ){ remove( x, root );}// Remove minimum item from the tree.void BinarySearchTree::removeMin( ){ removeMin( root );}BinaryNode * BinarySearchTree::findMin( ) const{ return findMin( root );}BinaryNode * BinarySearchTree::findMax( ) const{ return findMax( root );}// Find item x in the tree.BinaryNode * BinarySearchTree::find( int x ) const{ return find( x, root );}// Make the tree logically empty.void BinarySearchTree::makeEmpty( ){ makeEmpty( root );}// Test if the tree is logically empty.// Return true if empty, false otherwise.bool BinarySearchTree::isEmpty( ) const{ return root == NULL;}// Deep copy.const BinarySearchTree &BinarySearchTree::operator=( const BinarySearchTree & rhs ){ if( this != &rhs ) { makeEmpty( ); root = clone( rhs.root ); } return *this;}void BinarySearchTree::insert( int x, BinaryNode * & t ) const{ if( t == NULL ) t = new BinaryNode( x, NULL, NULL ); else if( x < t->element ) insert( x, t->left ); else if( t->element < x ) insert( x, t->right ); else { cout<<"ERROR!! Duplicate Element."<<endl;}}void BinarySearchTree::remove( int x, BinaryNode * & t ) const{ if( t == NULL ) { cout<<"This node does not exist!!"<<endl; return;} if( x < t->element ) remove( x, t->left ); else if( t->element < x ) remove( x, t->right ); else if( t->left != NULL && t->right != NULL ) // Two children { t->element = findMin( t->right )->element; removeMin( t->right ); // Remove minimum } else { BinaryNode *oldNode = t; t = ( t->left != NULL ) ? t->left : t->right; // Reroot t delete oldNode; // delete old root }}void BinarySearchTree::removeMin( BinaryNode * & t ) const{ if( t == NULL ) { cout<<"Empty Tree!!"<<endl; return;} else if( t->left != NULL ) removeMin( t->left ); else { BinaryNode *tmp = t; t = t->right; delete tmp; }}BinaryNode * BinarySearchTree::findMin( BinaryNode *t ) const{ if( t != NULL ) while( t->left != NULL ) t = t->left; return t;}BinaryNode* BinarySearchTree::findMax( BinaryNode *t ) const{ if( t != NULL ) while( t->right != NULL ) t = t->right; return t;}BinaryNode * BinarySearchTree::find( int x, BinaryNode *t ) const{ while( t != NULL ) if( x < t->element ) t = t->left; else if( t->element < x ) t = t->right; else return t; // Match return NULL; // Not found}void BinarySearchTree::makeEmpty( BinaryNode * & t ) const{ if( t != NULL ) { makeEmpty( t->left ); makeEmpty( t->right ); delete t; } t = NULL;}// Internal method to clone subtree.BinaryNode * BinarySearchTree::clone( BinaryNode * t ) const{ if( t == NULL ) return NULL; else return new BinaryNode( t->element, clone( t->left ), clone( t->right ));} 一个测试程序#include <iostream>#include "BinarySearchTree.h"using namespace std;int main( ){BinarySearchTree t;t.insert(21);t.insert(12);t.insert(0);t.insert(35);t.insert(15);t.insert(36);t.insert(14);cout<< (t.findMax())->getElement()<<endl;cout<< (t.findMin())->getElement()<<endl;cout<< (t.find(35)) ->getElement()<<endl;t.remove(35);if(t.find(35)==NULL)cout<<"This node does not exist!!"<<endl;t.makeEmpty();cout<<t.isEmpty()<<endl; return 0;}P300: AVL树的实现avlnode.h文件#ifndef AVLNODE_H#define AVLNODE_H#include <iostream>using namespace std;template <class T> class AvlTree; //声明AvlTree类template <class T>class AvlNode{T data;//关键码AvlNode *leftChild;//左孩子AvlNode *rightChild;//右孩子int balance;//平衡因子public://构造函数AvlNode():left(NULL),right(NULL),balance(0){};AvlNode(const T& e,AvlNode<T> *lt = NULL,AvlNode<T> *rt = NULL):data(e),leftChild(lt),rightChild(rt),balance(0){};int getBalance() const{return balance;}AvlNode<T>* getLeftChild() const{return leftChild;}AvlNode<T>* getRightChild() const{return rightChild;}T getData() const{return data;}friend class AvlTree<T>;};#endifavltree.h文件#include "avlnode.h"template <class T>class AvlTree{AvlNode<T> *root;bool Insert(AvlNode<T> *& rt,T x, bool &taller);bool Remove(AvlNode<T> *& rt,T x, bool &shorter);void RotateLeft(AvlNode<T> * &node);//左旋函数void RotateRight(AvlNode<T> * &node);//右旋函数void RightBalanceAfterInsert(AvlNode<T> * &sRoot, bool &taller);void LeftBalanceAfterInsert(AvlNode<T> * &sRoot, bool &taller);void RightBalanceAfterDelete(AvlNode<T> * &sRoot, bool &shorter);void LeftBalanceAfterDelete(AvlNode<T> * &sRoot, bool &shorter);public: AvlTree():root(NULL){}AvlNode<T>* getRoot() const{return root;}bool Insert(T x){bool taller = false;return Insert(root, x, taller );}bool Remove(T x){bool shorter = false;return Remove(root, x, shorter);}//输出树形结构void DisplayTree(AvlNode<T> *t,int layer) const;};template <typename T>void AvlTree<T>::RotateLeft(AvlNode<T> * & node){ if( (node == NULL) || (node->rightChild == NULL) ) return; AvlNode<T> * tmpNode = new AvlNode<T>(node->data); if(tmpNode == NULL ) return; tmpNode->leftChild = node->leftChild; node->leftChild = tmpNode; tmpNode->rightChild = node->rightChild->leftChild; AvlNode<T> *toDelete = node->rightChild; node->data = toDelete->data; node->rightChild = toDelete->rightChild; delete toDelete;}template <typename T>void AvlTree<T>::RotateRight(AvlNode<T> * & node){ if( (node == NULL) || (node->leftChild == NULL) ) return; AvlNode<T> *tmpNode = new AvlNode<T>(node->data); if(tmpNode == NULL ) return; tmpNode->rightChild = node->rightChild; node->rightChild = tmpNode; tmpNode->leftChild = node->leftChild->rightChild; AvlNode<T> *toDelete = node->leftChild; node->data = toDelete->data; node->leftChild = toDelete->leftChild; delete toDelete;}//如果插入节点后, rt的右高度增加, 则调用此函数进行平衡化template <typename T>void AvlTree<T>::RightBalanceAfterInsert(AvlNode<T> *&sRoot,bool &taller){ if( (sRoot == NULL) || (sRoot->rightChild == NULL) ) return; AvlNode<T> *rightsub = sRoot->rightChild,*leftsub; switch(rightsub->balance){ case 1: sRoot->balance = rightsub->balance = 0; RotateLeft(sRoot); taller = false; break; case 0: cout<<"树已经平衡化."<<endl; break; case -1: leftsub = rightsub->leftChild; switch(leftsub->balance){ case 1: sRoot->balance = -1; rightsub->balance = 0; break; case 0: sRoot->balance = rightsub->balance = 0; break; case -1: sRoot->balance = 0; rightsub->balance = 1; break; } leftsub->balance = 0; RotateRight(rightsub); RotateLeft(sRoot); taller = false; break; }}//如果插入节点后, rt的左高度增加, 则调用此函数进行平衡化template <typename T>void AvlTree<T>::LeftBalanceAfterInsert(AvlNode<T> *&sRoot,bool &taller){ AvlNode<T> *leftsub = sRoot->leftChild,*rightsub; switch(leftsub->balance){ case -1: sRoot->balance = leftsub->balance = 0; RotateRight(sRoot); taller = false; break; case 0: cout<<"树已经平衡化."<<endl; break; case 1: rightsub = leftsub->rightChild; switch(rightsub->balance){ case -1: sRoot->balance = 1; leftsub->balance = 0; break; case 0: sRoot->balance = leftsub->balance = 0; break; case 1: sRoot->balance = 0; leftsub->balance = -1; break; } rightsub->balance = 0; RotateLeft(leftsub); RotateRight(sRoot); taller = false; break; }}//如果删除节点后, rt的左高度减少, 则调用此函数进行平衡化template <typename T>void AvlTree<T>::RightBalanceAfterDelete(AvlNode<T> * &sRoot,bool &shorter){ AvlNode<T> *rightsub = sRoot->rightChild,*leftsub; switch(rightsub->balance){ case 1: sRoot->balance = sRoot->balance = 0; RotateLeft(sRoot); break; case 0: sRoot->balance = 0; rightsub->balance = -1; RotateLeft(sRoot); break; case -1: leftsub = rightsub->leftChild; switch(leftsub->balance){ case -1: sRoot->balance = 0; rightsub->balance = 1; break; case 0: sRoot->balance = rightsub->balance = 0; break; case 1: sRoot->balance = -1; rightsub->balance = 0; break; } leftsub->balance = 0; RotateRight(rightsub); RotateLeft(sRoot); shorter = false; break; }}//如果删除节结点后, rt的右高度减少, 则调用此函数进行平衡化template <typename T>void AvlTree<T>::LeftBalanceAfterDelete(AvlNode<T> * &sRoot,bool &shorter){ AvlNode<T> *leftsub = sRoot->leftChild,*rightsub; switch(leftsub->balance){ case 1: sRoot->balance = sRoot->balance = 0; RotateRight(sRoot); break; case 0: sRoot->balance = 0; leftsub->balance = -1; RotateRight(sRoot); break; case -1: rightsub = leftsub->rightChild; switch(rightsub->balance){ case -1: sRoot->balance = 0; leftsub->balance = 1; break; case 0: sRoot->balance = leftsub->balance = 0; break; case 1: sRoot->balance = -1; leftsub->balance = 0; break; } rightsub->balance = 0; RotateLeft(leftsub); RotateRight(sRoot); shorter = false; break; }}//插入值为x的结点, 实现方式采用递归template <typename T>bool AvlTree<T>::Insert(AvlNode<T> *& rt, T x, bool &taller){ bool success;//递归函数的"基本条件" if ( rt == NULL ){ rt = new AvlNode<T>(x); success = rt != NULL ? true : false; if ( success ) taller = true; }//如果x的值小于rt的关键码 else if ( x < rt->data ){ //Insert的递归调用,从rt的左子树寻找合适的位置插入 success = Insert ( rt->leftChild, x, taller ); if ( taller ){//如果插入后使得rt的左高度增加 switch ( rt->balance ) { case -1 : LeftBalanceAfterInsert( rt, taller ); break; case 0 : rt->balance = -1; break; case 1 : rt->balance = 0; taller = false; break; } } }//如果x的值大于rt的关键码 else if ( x > rt->data ){ //Insert的递归调用,从rt的右子树寻找合适的位置插入 success = Insert ( rt->rightChild, x, taller ); if ( taller ){//如果插入后使得rt的右高度增加 switch ( rt->balance ) { case -1: rt->balance = 0; taller = false; break; case 0 : rt->balance = 1; break; case 1 : RightBalanceAfterInsert(rt, taller); break; } } } return success; }//删除值为x的结点, 实现方式采用递归 template <typename T>bool AvlTree<T>::Remove(AvlNode<T> *& rt, T x, bool &shorter){ bool success = false; if(rt == NULL) return false;//如果rt就是要删除的结点 if(x == rt->data) { if(rt->leftChild != NULL && rt->rightChild != NULL) { //寻找rt的中序遍历的前驱结点,用r表示 AvlNode<T> *r = rt->leftChild; while(r->rightChild != NULL) { r = r->rightChild; } //交换rt和r的值 T temp = rt->data; rt->data = r->data; r->data = temp; //递归函数, 从rt的左子树中删除关键码为x的结点 success = Remove(rt->leftChild, x, shorter); if(shorter) {//如果删除后引起rt的左高度减少 switch(rt->balance) { case -1: rt->balance = 0; break; case 0 : rt->balance = 1; shorter = 0; break; case 1 : RightBalanceAfterDelete(rt, shorter);break; } } } else {//rt最多只有一个子女,这是递归的出口 AvlNode<T> *p = rt; rt = rt->leftChild != NULL ? rt->leftChild : rt->rightChild; delete p; success = true; shorter = true; } } else if(x < rt->data) { //递归函数调用,从rt的左子树中删除关键码为x的结点 success = Remove(rt->leftChild, x, shorter); if(shorter) {//如果删除后引起rt的左高度减少 switch(rt->balance) { case -1: rt->balance = 0; break; case 0 : rt->balance = 1; shorter = 0; break; case 1 : RightBalanceAfterDelete(rt, shorter); break; } } } else if(x > rt->data) { //递归函数调用,从rt的右子树中删除关键码为x的结点 success = Remove(rt->rightChild, x, shorter); if(shorter) {//如果删除后引起sRoot的右高度减少 switch(rt->balance) { case -1: LeftBalanceAfterDelete(rt, shorter); break; case 0 : rt->balance = -1; shorter = 0; break; case 1 : rt->balance = 0; break; } } } return success;}template <typename T>void AvlTree<T>::DisplayTree(AvlNode<T> *t,int layer) const{ if(t == NULL)return; if(t->rightChild)DisplayTree(t->rightChild, layer+1); for(int i =0;i<layer;i++)cout<<" "; cout<<t->data<<endl; if(t->leftChild)DisplayTree(t->leftChild,layer+1);}测试程序 main.cpp#include <conio.h>#include <iostream>#include "avltree.h"using namespace std;int main(int argc, char** argv) {AvlTree<int> tree;tree.Insert(21);tree.Insert(12);tree.Insert(35);tree.Insert(0);tree.Insert(15);tree.Insert(36);tree.Insert(14);tree.Insert(7);tree.Insert(28);tree.Insert(9); tree.DisplayTree(tree.getRoot(), 0);while(true){int number;cout<<"请输入要删除的结点:"<<endl;cin>>number;tree.Remove(number);cout<<"删除后的树为:"<<endl;tree.DisplayTree(tree.getRoot(), 0);cout<<"按ESC退出, 或按任意键继续!"<<endl;int order=getch();if (order ==27){break;} } return 0;}P314: 红黑树的实现RedBlackTree.h文件template <typename T>class Node{ public: bool color;//RED - 1, BLACK - 0 T key;// 关键字(键值) Node *left;// 左孩子 Node *right;// 右孩子 Node *parent;// 父结点 Node(T value, bool c, Node *p, Node *l, Node *r): key(value),color(c),parent(),left(l),right(r) {}};template <typename T>class RBTree { private: Node<T> *root; // 根结点 public: RBTree(); ~RBTree(); Node<T>* FindElement(T key); T GetMin(); T GetMax(); void RBTInsert(T key); //void RBTRemove(T key); void Destroy(); private: Node<T>* FindElement(Node<T>* x, T key) const; Node<T>* GetMin(Node<T>* tree); Node<T>* GetMax(Node<T>* tree); void LeftRotate(Node<T>* &root, Node<T>* x); void RightRotate(Node<T>* &root, Node<T>* y); void RBTInsert(Node<T>* &root, Node<T>* node); void RBTInsertFixUp(Node<T>* &root, Node<T>* node); //void RBTRemove(Node<T>* &root, Node<T> *node); //void RBTRemoveFixUp(Node<T>* &root, Node<T> *node, Node<T> *parent); void Destroy(Node<T>* &tree);};//构造函数template <typename T>RBTree<T>::RBTree(){ root = NULL;}//析构函数template <typename T>RBTree<T>::~RBTree() { Destroy();}//销毁红黑树template <typename T>void RBTree<T>::Destroy(Node<T>* &tree){ if (tree==NULL) return ; if (tree->left != NULL) return destroy(tree->left); if (tree->right != NULL) return destroy(tree->right); delete tree; tree=NULL;}template <typename T>void RBTree<T>::Destroy(){ Destroy(root);}template <typename T>Node<T>* RBTree<T>::FindElement(Node<T>* x, T key) const{ if (x==NULL || x->key==key) return x; if (key < x->key) return FindElement(x->left, key); else return FindElement(x->right, key);}//在树中查找一个元素template <typename T>Node<T>* RBTree<T>::FindElement(T key) { FindElement(root, key);}template <typename T>Node<T>* RBTree<T>::GetMin(Node<T>* tree){ if (tree == NULL) return NULL; while(tree->left != NULL) tree = tree->left; return tree;}//取得树中最小的关键码template <typename T>T RBTree<T>::GetMin(){ Node<T> *p = GetMin(root); if (p != NULL) return p->key; return (T)NULL;} template <typename T>Node<T>* RBTree<T>::GetMax(Node<T>* tree){ if (tree == NULL) return NULL; while(tree->right != NULL) tree = tree->right; return tree;}//取得树中最大的关键码template <typename T>T RBTree<T>::GetMax(){ Node<T> *p = GetMax(root); if (p != NULL) return p->key; return (T)NULL;}//左旋函数template <typename T>void RBTree<T>::LeftRotate(Node<T>* &root, Node<T>* x){ Node<T> *y = x->right; x->right = y->left; if (y->left != NULL) y->left->parent = x; y->parent = x->parent; if (x->parent == NULL) { root = y; } else { if (x->parent->left == x) x->parent->left = y; else x->parent->right = y; } y->left = x; x->parent = y;}//右旋函数template <typename T>void RBTree<T>::RightRotate(Node<T>* &root, Node<T>* y){ Node<T> *x = y->left; y->left = x->right; if (x->right != NULL) x->right->parent = y; x->parent = y->parent; if (y->parent == NULL) { root = x; } else { if (y == y->parent->right) y->parent->right = x; else y->parent->left = x; } x->right = y; y->parent = x;}//插入结点后调整树结构以保持红黑性质template <typename T>void RBTree<T>::RBTInsertFixUp(Node<T>* &root, Node<T>* node){ Node<T> *parent, *gparent; while ((parent = node->parent) && (parent->color==1)) { gparent = node->parent; if (parent == gparent->left) { { Node<T> *uncle = gparent->right; if (uncle && (uncle->color==1)) { do { uncle->color = 0; } while (0); do { parent->color = 0; } while (0); do { gparent->color = 1; } while (0); node = gparent; continue; } } if (parent->right == node) { Node<T> *tmp; LeftRotate(root, parent); tmp = parent; parent = node; node = tmp; } do { parent->color = 0; } while (0); do { gparent->color = 1; } while (0); RightRotate(root, gparent); } else { { Node<T> *uncle = gparent->left; if (uncle && (uncle->color == 1)) { do { uncle->color = 0; } while (0); do { parent->color = 0; } while (0); do { gparent->color = 1; } while (0); node = gparent; continue; } } if (parent->left == node) { Node<T> *tmp; RightRotate(root, parent); tmp = parent; parent = node; node = tmp; } do { parent->color = 0; } while (0); do { gparent->color = 1; } while (0); LeftRotate(root, gparent); } } do { root->color = 0; } while (0);}//结点插入函数template <typename T>void RBTree<T>::RBTInsert(Node<T>* &root, Node<T>* node){ Node<T> *y = NULL; Node<T> *x = root; while (x != NULL) { y = x; if (node->key < x->key) x = x->left; else x = x->right; } node->parent = y; if (y!=NULL) { if (node->key < y->key) y->left = node; else y->right = node; } else root = node; node->color = 1; RBTInsertFixUp(root, node);}template <typename T>void RBTree<T>::RBTInsert(T key){ Node<T> *z=NULL; if ((z=new Node<T>(key,0,NULL,NULL,NULL)) == NULL) return ; RBTInsert(root, z);}一个测试程序#include <iostream>#include "RedBlackTree.h"using namespace std;int main(int argc, char** argv) {int a[]= {12, 15, 16, 17, 21, 22, 23, 30, 35};int length = (sizeof(a)) / (sizeof(a[0])) ;RBTree<int>* tree=new RBTree<int>();for(int i=0; i<length; i++) tree->RBTInsert(a[i]);cout<<tree->GetMin()<<endl;cout<<tree->GetMax()<<endl;return 0;}P317: Trie树的实现特别说明:如果编译环境是DEV C++,需要把书中的头文件包含从<string>改为<cstring>,如下代码即采用这种方式

1. 创建基于Java的配置即使Spring的Java配置可以让太阳城百家_乐开户台下众多的众人们 太阳城百家_乐开户台下众多的众人们 使用XML就可以编写大多数的Spring配置,但是太阳城百家_乐开户台下众多的众人们 仍然需要极少量的XML来启用Java配置 不夜城娱乐城开户玄武台的另一头

名称为 LHello; 的 class 里只有 2 个 directive methods

假如省略这个参数,系统则采用Recordset对象的Source属性 188金宝博开户如同炸雷一般

查看包中各类和文档后发现有些类(例如:断言is())同时出现在了org.hamcrest.Mathchers和org.hamcrest.core中,则在用到时候引入的时候需要注意

p>这是一个交流、互助的计划太阳城百家_乐开户台下众多的众人们 希望在太阳城百家_乐开户台下众多的众人们 主站上,以写作的形式进行专题探讨,与大家分享交流知识和经验;太阳城百家_乐开户台下众多的众人们 也希望在讨论群里,进行更加充分细致的交流探讨,讨论的成果就可以作为太阳城百家_乐开户台下众多的众人们 分享文太阳城百家_乐开户台下众多的众人们 的提纲,进而形成作品在太阳城百家_乐开户台下众多的众人们 和个人站上分享 太阳城百家_乐开户台下众多的众人们 在《计算广告小窥[上]》曾经提到: “自从广告上了互联网,广告的面貌就焕然一新 大家旺娱乐城开户指着江云来这的方向

【更多热点请手机下载《爱济南》客户端 山东大小事尽在掌握】

原标题:太阳城百家_乐开户台下众多的众人们
分享到:
值班主任:田艳敏
免责声明:凡本网注明“来源:XXX(非舜网)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。本网转载其他媒体之稿件,意在为公众提供免费服务。如稿件版权单位或个人不想在本网发布,可与本网联系,本网视情况可立即将其撤除。